Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.

Identifieur interne : 001A30 ( Main/Exploration ); précédent : 001A29; suivant : 001A31

Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.

Auteurs : Devinder Sandhu [États-Unis] ; I Made Tasma ; Ryan Frasch ; Madan K. Bhattacharyya

Source :

RBID : pubmed:19656407

Descripteurs français

English descriptors

Abstract

BACKGROUND

Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis non-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis.

RESULTS

Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA) or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i) PR-1 was induced following INA treatment and (ii) BGL2 following infection with Pseudomonas syringae pv. tomato (Pst), and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively.

CONCLUSION

Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential for oligomer-monomer transition of Arabidopsis NPR1, with Ser and Leu residues in GmNPR1-1 and GmNPR1-2, respectively, suggested that there may be differences between the regulatory mechanisms of GmNPR1 and Arabidopsis NPR proteins.


DOI: 10.1186/1471-2229-9-105
PubMed: 19656407
PubMed Central: PMC2738679


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.</title>
<author>
<name sortKey="Sandhu, Devinder" sort="Sandhu, Devinder" uniqKey="Sandhu D" first="Devinder" last="Sandhu">Devinder Sandhu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agronomy, Iowa State University, Ames, IA 50011, USA. dsandhu@uwsp.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, Iowa State University, Ames, IA 50011</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tasma, I Made" sort="Tasma, I Made" uniqKey="Tasma I" first="I Made" last="Tasma">I Made Tasma</name>
</author>
<author>
<name sortKey="Frasch, Ryan" sort="Frasch, Ryan" uniqKey="Frasch R" first="Ryan" last="Frasch">Ryan Frasch</name>
</author>
<author>
<name sortKey="Bhattacharyya, Madan K" sort="Bhattacharyya, Madan K" uniqKey="Bhattacharyya M" first="Madan K" last="Bhattacharyya">Madan K. Bhattacharyya</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19656407</idno>
<idno type="pmid">19656407</idno>
<idno type="doi">10.1186/1471-2229-9-105</idno>
<idno type="pmc">PMC2738679</idno>
<idno type="wicri:Area/Main/Corpus">001A49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A49</idno>
<idno type="wicri:Area/Main/Curation">001A49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A49</idno>
<idno type="wicri:Area/Main/Exploration">001A49</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.</title>
<author>
<name sortKey="Sandhu, Devinder" sort="Sandhu, Devinder" uniqKey="Sandhu D" first="Devinder" last="Sandhu">Devinder Sandhu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Agronomy, Iowa State University, Ames, IA 50011, USA. dsandhu@uwsp.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Agronomy, Iowa State University, Ames, IA 50011</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
<settlement type="city">Ames (Iowa)</settlement>
</placeName>
<orgName type="university">Université d'État de l'Iowa</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tasma, I Made" sort="Tasma, I Made" uniqKey="Tasma I" first="I Made" last="Tasma">I Made Tasma</name>
</author>
<author>
<name sortKey="Frasch, Ryan" sort="Frasch, Ryan" uniqKey="Frasch R" first="Ryan" last="Frasch">Ryan Frasch</name>
</author>
<author>
<name sortKey="Bhattacharyya, Madan K" sort="Bhattacharyya, Madan K" uniqKey="Bhattacharyya M" first="Madan K" last="Bhattacharyya">Madan K. Bhattacharyya</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Isonicotinic Acids (pharmacology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phytophthora (pathogenicity)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Soybeans (genetics)</term>
<term>Soybeans (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Acides isonicotiniques (pharmacologie)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Banque de gènes (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Phytophthora (pathogénicité)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Soja (génétique)</term>
<term>Soja (métabolisme)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>DNA, Plant</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Isonicotinic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Diseases</term>
<term>Plants, Genetically Modified</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Maladies des plantes</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Soja</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Soja</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acides isonicotiniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Library</term>
<term>Genetic Complementation Test</term>
<term>Genome, Plant</term>
<term>Molecular Sequence Data</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence d'ADN</term>
<term>Banque de gènes</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Génome végétal</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence d'acides aminés</term>
<term>Test de complémentation</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis non-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA) or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i) PR-1 was induced following INA treatment and (ii) BGL2 following infection with Pseudomonas syringae pv. tomato (Pst), and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential for oligomer-monomer transition of Arabidopsis NPR1, with Ser and Leu residues in GmNPR1-1 and GmNPR1-2, respectively, suggested that there may be differences between the regulatory mechanisms of GmNPR1 and Arabidopsis NPR proteins.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19656407</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2009</Year>
<Month>Aug</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.</ArticleTitle>
<Pagination>
<MedlinePgn>105</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-9-105</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis non-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA) or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i) PR-1 was induced following INA treatment and (ii) BGL2 following infection with Pseudomonas syringae pv. tomato (Pst), and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential for oligomer-monomer transition of Arabidopsis NPR1, with Ser and Leu residues in GmNPR1-1 and GmNPR1-2, respectively, suggested that there may be differences between the regulatory mechanisms of GmNPR1 and Arabidopsis NPR proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sandhu</LastName>
<ForeName>Devinder</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Agronomy, Iowa State University, Ames, IA 50011, USA. dsandhu@uwsp.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tasma</LastName>
<ForeName>I Made</ForeName>
<Initials>IM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Frasch</LastName>
<ForeName>Ryan</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bhattacharyya</LastName>
<ForeName>Madan K</ForeName>
<Initials>MK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>08</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007539">Isonicotinic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C105496">NPR1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5398-44-7</RegistryNumber>
<NameOfSubstance UI="C077261">2,6-dichloroisonicotinic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007539" MajorTopicYN="N">Isonicotinic Acids</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19656407</ArticleId>
<ArticleId IdType="pii">1471-2229-9-105</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-9-105</ArticleId>
<ArticleId IdType="pmc">PMC2738679</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Oct;18(10):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16255242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Aug;4(4):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Jun;18(6):511-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15986920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Jan 29;285(4):1353-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9917379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:177-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Mar;9(3):425-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9090885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Feb;14(2):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jul;27(2):101-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11489188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 16;250(4983):1002-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17746925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 May 21;284(5418):1313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10334979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1983 Jul 1;132(1):6-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6312838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Dec;12(12):2339-2350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11148282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Aug 6;261(5122):754-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17757215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nematol. 2006 Jun;38(2):173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19259444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Sep;21(9):1215-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18700826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Jan 10;88(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9019406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 1997 Sep;34(2):118-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9230099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1979 Dec;99(2):410-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Jun;111(1):75-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15841357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Jun;4(6):645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1392589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2004 Dec;13(6):567-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15672838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Feb;19(2):123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16529374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Dec;18(12):3670-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 26;95(11):6531-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9601001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 1954 Aug;44(2):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13184240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1989 Mar;1(3):381-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2535509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 May;14(5):587-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11332723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 1993 Jun;1(3):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8143122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Apr;104(4):1109-1112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Feb;11(2):191-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Nov 18;266(5188):1247-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17810266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Dec;168(4):2157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Nov;6(11):1583-1592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jan;22(1):86-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215394</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Ames (Iowa)</li>
</settlement>
<orgName>
<li>Université d'État de l'Iowa</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bhattacharyya, Madan K" sort="Bhattacharyya, Madan K" uniqKey="Bhattacharyya M" first="Madan K" last="Bhattacharyya">Madan K. Bhattacharyya</name>
<name sortKey="Frasch, Ryan" sort="Frasch, Ryan" uniqKey="Frasch R" first="Ryan" last="Frasch">Ryan Frasch</name>
<name sortKey="Tasma, I Made" sort="Tasma, I Made" uniqKey="Tasma I" first="I Made" last="Tasma">I Made Tasma</name>
</noCountry>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Sandhu, Devinder" sort="Sandhu, Devinder" uniqKey="Sandhu D" first="Devinder" last="Sandhu">Devinder Sandhu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19656407
   |texte=   Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19656407" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024